Daniel Willingham--Science & Education
Hypothesis non fingo
  • Home
  • About
  • Books
  • Articles
  • Op-eds
  • Videos
  • Learning Styles FAQ
  • Daniel Willingham: Science and Education Blog

"Active learning" in college STEM courses--meta-analysis

6/20/2014

 
This column was originally published at RealClearEducation.com on May 20, 2014.

When you think of a college class, what image comes to mind? Probably a professor droning about economics, or biology, or something, in an auditorium with several hundred students. If you focus on the students in your mind’s eye, you’re probably imagining them looking bored and, if you’ve been in a college lecture hall recently, your image would include students shopping online and chatting with friends via social media while the oblivious professor lectures on. What could improve the learning and engagement of these students? According to a recent literature review, the results of which were reported by Science, Wired, PBS, and others, damn near anything.

Scott Freeman and his associates (Freeman et al, 2014) conducted a meta-analysis of 225 studies of college instruction that compared “traditional lecturing” vs. “active learning” in STEM courses. (STEM is an acronym for science, technology, engineering, and math.) Student performance on exams increased by about half a standard deviation. Students in the traditional lecture classes were 1.5 times as likely to fail as students in the active learning classes.

Previous studies of college course interventions have been criticized on methodological grounds. For example, classes would experience either traditional lecture or active learning, but no effort would be made to evaluate whether the students were equivalently prepared when they started the class. Freeman et al. categorized the studies in their meta-analysis by methodological rigor, and reported that the size of the benefit was not different among studies of high or low quality.

That’s encouraging. What’s surprising is the breadth of the activities covered by the term “active learning” and how little we know about their differential effectiveness and why they work. According to the article, active learning “included approaches as diverse as occasional group problem-solving, worksheets or tutorials completed during class, use of personal response systems with or without peer instruction, and studio or workshop course designs.” The authors do not report on differential effectiveness of these methods.

In other words, in most of the studies summarized in the meta-analysis professors were still doing a whole lot of lecturing, but every now and then they would do something else. The “something else” ostensibly made students think about the course material, digest it in some way, generate a response. The authors certainly believe that that’s the source of the improvement, citing Piaget and Vygotsky as learning theorists who “challenge the traditional, instructor-focused, ‘teaching by telling’ approach.”

I’m ready to believe that that aspect of the activity was important (although not because of theory advanced by Piaget and Vygotsky nearly a century ago.) But It would have been useful to evaluate the impact of an active control group-- that is, where active learning is compared to a class in which the professor is asked to do something new, but does not entail active learning  (e.g., ask the professor to show more videos). That’s important because interventions typically prompt a change for the better. John Hattie estimates that interventions boost student learning by 0.3 standard deviations, on average.

The exact figures are not reported, but it appears that for most studies the lecture condition was business-as-usual, the thing that typically happens. An active control is important to guard against the possibility that students improve because the professor is energized by doing something different, or holds higher expectations for students because she expects the “something different” to prompt improvement. It’s also possible that asking the professor to make a change in her teaching actually improves her lectures because she reorganizes them to incorporate the change.

It may seem captious to harp on the “why.” To be clear, I think that focusing on making students mentally active while they learn is a wonderful idea, and an equally wonderful idea is giving instructors rules of thumb and classroom techniques that make it likely that students will think. But knowing the source of the improvement will allow individual instructors to tailor methods to their own teaching, rather than following instructions without knowing why they help. It will also help the field collectively move to greater improvement.

Perhaps the best news is that the effectiveness of college instruction is on people’s minds. This past winter I visited a prominent research university, and an old friend told me “I’ve been here twenty-five years, and I don’t think I heard undergraduate teaching mentioned more than twice. In the last two years, that’s all anybody talks about, all over campus.”

Amen.

References

Freeman, S, Eddy, S. L, McDonough, M., Smith, M. K, Okoroafor, N. Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1319030111

Hattie, J. (2013). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge.


Comments are closed.

    Enter your email address:

    Delivered by FeedBurner

    RSS Feed


    Purpose

    The goal of this blog is to provide pointers to scientific findings that are applicable to education that I think ought to receive more attention.

    Archives

    January 2024
    April 2022
    July 2020
    May 2020
    March 2020
    February 2020
    December 2019
    October 2019
    April 2019
    March 2019
    January 2019
    October 2018
    September 2018
    August 2018
    June 2018
    March 2018
    February 2018
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    April 2017
    March 2017
    February 2017
    November 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    December 2015
    July 2015
    April 2015
    March 2015
    January 2015
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    September 2012
    August 2012
    July 2012
    June 2012
    May 2012
    April 2012
    March 2012
    February 2012

    Categories

    All
    21st Century Skills
    Academic Achievement
    Academic Achievement
    Achievement Gap
    Adhd
    Aera
    Animal Subjects
    Attention
    Book Review
    Charter Schools
    Child Development
    Classroom Time
    College
    Consciousness
    Curriculum
    Data Trustworthiness
    Education Schools
    Emotion
    Equality
    Exercise
    Expertise
    Forfun
    Gaming
    Gender
    Grades
    Higher Ed
    Homework
    Instructional Materials
    Intelligence
    International Comparisons
    Interventions
    Low Achievement
    Math
    Memory
    Meta Analysis
    Meta-analysis
    Metacognition
    Morality
    Motor Skill
    Multitasking
    Music
    Neuroscience
    Obituaries
    Parents
    Perception
    Phonological Awareness
    Plagiarism
    Politics
    Poverty
    Preschool
    Principals
    Prior Knowledge
    Problem-solving
    Reading
    Research
    Science
    Self-concept
    Self Control
    Self-control
    Sleep
    Socioeconomic Status
    Spatial Skills
    Standardized Tests
    Stereotypes
    Stress
    Teacher Evaluation
    Teaching
    Technology
    Value-added
    Vocabulary
    Working Memory