Daniel Willingham--Science & Education
Hypothesis non fingo
  • Home
  • About
  • Books
  • Articles
  • Op-eds
  • Videos
  • Learning Styles FAQ
  • Daniel Willingham: Science and Education Blog

Amazingly easy intervention for STEM participation

8/13/2012

 
Picture
Making a change to education that seems like a clear improvement is never easy. Or almost never.

Judith Harackiewicz and her colleagues have recently reported an intervention that is inexpensive, simple, and leads high school students to take more STEM courses.

The intervention had three parts, administered over 15-months when students were in the 10th and 11th grades. In October of 10th grade researchers mailed a brochure to each household titled Making Connections: Helping Your Teen Find Value in School. It described the connections between math, science, and daily life, and included ideas about how to discuss this topic with students.

In January of 11th grade a second brochure was sent. It covered similar ideas, but with different examples. Parents also received a letter that included the address of a password-protected website devised by researchers, which provided more information about STEM and daily life, as well as STEM careers.

In Spring of 11th grade, parents were asked to complete an online questionnaire about the website.

There were a total of 188 students in the study: half received this intervention, and the control group did not.

Students in the intervention group took more STEM courses during their last two years of high school (8.31 semesters) than control students (7.50) semesters.

This difference turned out to be entirely due to differences in elective, advanced courses, as shown in the figure below.

Picture
An important caveat about this study: all of the subjects are participating in the Wisconsin Study of Families and Work. This study began in 1990. when women were in their fifth month of pregnancy.

The first brochure that researchers sent to subjects included a letter thanking them for their ongoing participation in the longer study. Hence, subjects could reasonably conclude that the present study was part of the longer study.

That's worth bearing in mind because ordinary parents might not be so ready to read brochures mailed to them by strangers, nor to visit suggested websites.

But that's not a fatal flaw of the research. It just means that we can't necessarily count on random parents reading the materials with the same care.

To  me, the effect is still remarkable. To put it in perspective, researchers also measured the effect of parental education on taking STEM courses. As many other researchers have found, the kids of better-educated parents took more STEM courses. But the effect of the intervention was nearly as large as the effect of parental education!

Clearly, further work is necessary but this is an awfully promising start.

Harackiewicz, J. M, Rozek, C. S., Hulleman, C. S & Hyde, J. S. (in press). Helping parents to motivate adolescents in mathematics and science: An experimental test of a utility-value intervention. Psychological Science.
Cal
8/13/2012 09:03:38 am

You sound like Jay Mathews with AP for all. Signing up for courses isn't as important as actually understanding them. And they're all averaging around 8 semesters.

You're not a high school teacher, so you don't know the impact of pushing unprepared kids into advanced classes, so perhaps you'll understand when I say that unless all those kids were, on average, fully prepared, the enrollment bump isn't that much to get worked up about.

Matt
8/17/2012 08:38:54 am

Signing up for courses is important, though not as important as passing them. Some of the new enrolees may be able to pass the class, but just weren't going to push themselves (or be pushed by their parents). On average, more of the new enrolees will probably be less prepared for STEM courses than the current enrolees, and as such may make life for STEM teachers more difficult.

Just because Mr. Willingham isn't a high school teacher doesn't mean he doesn't understand these impacts.

The kids that otherwise wouldn't have enrolled will benefit from enrolling in STEM classes only if they have the prerequisite knowledge for each of those classes. The school and community will benefit from pushing kids who have the prerequisite knowledge into more STEM classes.

Do we have numbers on the kids who have passed the mandatory math classes but don't take any math electives in high school?


Susan Townsend
8/18/2012 11:56:08 am

The question I am prompted to ask: How can we learn from these encouraging results to impact the number of "prepared for HS STEM class" students? What would this intervention look like at the MS level, if the goal was the same: engage parents in the value of STEM for both science literacy and potential careers in science?


Comments are closed.

    Enter your email address:

    Delivered by FeedBurner

    RSS Feed


    Purpose

    The goal of this blog is to provide pointers to scientific findings that are applicable to education that I think ought to receive more attention.

    Archives

    April 2022
    July 2020
    May 2020
    March 2020
    February 2020
    December 2019
    October 2019
    April 2019
    March 2019
    January 2019
    October 2018
    September 2018
    August 2018
    June 2018
    March 2018
    February 2018
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    April 2017
    March 2017
    February 2017
    November 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    December 2015
    July 2015
    April 2015
    March 2015
    January 2015
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    September 2012
    August 2012
    July 2012
    June 2012
    May 2012
    April 2012
    March 2012
    February 2012

    Categories

    All
    21st Century Skills
    Academic Achievement
    Academic Achievement
    Achievement Gap
    Adhd
    Aera
    Animal Subjects
    Attention
    Book Review
    Charter Schools
    Child Development
    Classroom Time
    College
    Consciousness
    Curriculum
    Data Trustworthiness
    Education Schools
    Emotion
    Equality
    Exercise
    Expertise
    Forfun
    Gaming
    Gender
    Grades
    Higher Ed
    Homework
    Instructional Materials
    Intelligence
    International Comparisons
    Interventions
    Low Achievement
    Math
    Memory
    Meta Analysis
    Meta-analysis
    Metacognition
    Morality
    Motor Skill
    Multitasking
    Music
    Neuroscience
    Obituaries
    Parents
    Perception
    Phonological Awareness
    Plagiarism
    Politics
    Poverty
    Preschool
    Principals
    Prior Knowledge
    Problem-solving
    Reading
    Research
    Science
    Self-concept
    Self Control
    Self-control
    Sleep
    Socioeconomic Status
    Spatial Skills
    Standardized Tests
    Stereotypes
    Stress
    Teacher Evaluation
    Teaching
    Technology
    Value-added
    Vocabulary
    Working Memory