Daniel Willingham--Science & Education
Hypothesis non fingo
  • Home
  • About
  • Books
  • Articles
  • Op-eds
  • Videos
  • Learning Styles FAQ
  • Daniel Willingham: Science and Education Blog

Neurosci & Educ--5 Days, 5 Ways. Day 1: Basic Architecture

12/3/2012

 
Neuroscience--especially human neuroscience, and more especially human functional brain imaging--has had a quite a run in the last twenty years. In the first decade the advances were known mostly to scientists. In the last ten years there have been plenty of articles in the popular press featuring brain images. Many of these articles have been breathless and silly. Some backlash was inevitable and one of the more potent examples was a recent op-ed in the New York Times. Still, as Gary Marcus pointed out in a nice blog piece, we would be wise not to throw the baby out with the bath water.

In that vein, I am following up on a piece I wrote last week, in which I argued that much of the work on this topic in education is neuro-garbage. Most of the piece was devoted to explaining why it's difficult to apply neuroscience to education. (I left it to the reader to infer that it's correspondingly easy to be glib.)
Picture
Toward the end of that piece I suggested that neuroscience can and has been usefully applied to problems in education. This week I'll describe how. I'll tackle one method each day this week.

I'll keep things as simple as possible, but fasten your seatbelt if you feel the need.

Method 1:

Neuroscience can give researchers clues about the basic architecture of a cognitive process. It can show that a cognitive process might be more complex than we would have otherwise guessed, or that it's more simple.

Consider the figure below from Dehaene et al (2003) (click it for a larger version)
Picture
This figure summarizes a great deal of work indicating that there are three representations of number in the brain: a core quantity system (red), numbers in verbal form (green), and attentional orientation on the number line.

Suppose I am an educational psychologist, trying to figure out how children develop concepts of number, and how to coordinate the teaching of early mathematics with these concepts. I must have a theory of how number is represented in the mind. It's possible--actually, it's likely--that I would think of number as one thing, that children have one concept of the number five, for example. But this neuroscientific work indicates that the brain might use three representations of number. So it might be wise for me to use three representations in my cognitive theory of mathematics (which will support my educational theory).

In this example, there is greater diversity (three representations) where we might have guessed that we'd see simplicity (one representation). The opposite may also happen.

In one example, neuroscientific data were useful in interpreting variations in dyslexia across languages.

One of the peculiarities of dyslexia is that some key symptoms vary across different languages. For example, people with dyslexia usually show a large disparity between visual word recognition and IQ. But that disparity tends to be much larger in languages in which the spelling-sound correspondence is often inconsistent (e.g., English) than in languages where it's more consistent (e.g., Italian).

This pattern raises the question: is what we're calling "dyslexia" really the same thing in English and Italian? Maybe reading difficulties are so intertwined with the language you're learning to read that it doesn't make sense to call problems by the same label when they apply to English vs. Italian. Or maybe the problems kids develop in English-speaking vs. Italian-speaking countries is due to differences in the way reading tends to be taught in different countries.

Eraldo Paulesu and his colleagues (2000) used brain imaging data to argue that dyslexia is the same disorder in readers of different languages. They showed that the same brain region in left temporal cortex shows reduced activation during reading in French, Italian, and British readers who have been diagnosed with dyslexia.
Picture
Hence in this case neuroscientific data has shown us that there is simplicity (one reading problem) where we could have reasonably thought there was greater diversity (different reading problems across languages).

EDIT: It's worth adding that anatomic separability (or overlap) doesn't guarantee cognitive separability or identity. But it's an indicator.

Tomorrow: Method 2.

References:
Dehaene, S., Pizaaz, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20,  487-506.

Paulesu, E., Demonet, J.-F., Fazio, F., McCrory, E., Chanoine, V., Brunswick, N., Cappa, S. F., Cossu, G., Habib, M., Frith, C. D., & Frith, U. (2000). Dyslexia: Cultural diversity and biological unity. Science, 291, 2165-2167.
Matthew
12/3/2012 04:09:13 am

Nice start Dan. And intelligible to the lay reader, if I am representative.

The first 'graph below the diagram under method 1, ends with "attentional orientation on the number line." Did you mean to add
"(blue)" to the end of that sentence?


Comments are closed.

    Enter your email address:

    Delivered by FeedBurner

    RSS Feed


    Purpose

    The goal of this blog is to provide pointers to scientific findings that are applicable to education that I think ought to receive more attention.

    Archives

    January 2024
    April 2022
    July 2020
    May 2020
    March 2020
    February 2020
    December 2019
    October 2019
    April 2019
    March 2019
    January 2019
    October 2018
    September 2018
    August 2018
    June 2018
    March 2018
    February 2018
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    April 2017
    March 2017
    February 2017
    November 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    December 2015
    July 2015
    April 2015
    March 2015
    January 2015
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    September 2012
    August 2012
    July 2012
    June 2012
    May 2012
    April 2012
    March 2012
    February 2012

    Categories

    All
    21st Century Skills
    Academic Achievement
    Academic Achievement
    Achievement Gap
    Adhd
    Aera
    Animal Subjects
    Attention
    Book Review
    Charter Schools
    Child Development
    Classroom Time
    College
    Consciousness
    Curriculum
    Data Trustworthiness
    Education Schools
    Emotion
    Equality
    Exercise
    Expertise
    Forfun
    Gaming
    Gender
    Grades
    Higher Ed
    Homework
    Instructional Materials
    Intelligence
    International Comparisons
    Interventions
    Low Achievement
    Math
    Memory
    Meta Analysis
    Meta-analysis
    Metacognition
    Morality
    Motor Skill
    Multitasking
    Music
    Neuroscience
    Obituaries
    Parents
    Perception
    Phonological Awareness
    Plagiarism
    Politics
    Poverty
    Preschool
    Principals
    Prior Knowledge
    Problem-solving
    Reading
    Research
    Science
    Self-concept
    Self Control
    Self-control
    Sleep
    Socioeconomic Status
    Spatial Skills
    Standardized Tests
    Stereotypes
    Stress
    Teacher Evaluation
    Teaching
    Technology
    Value-added
    Vocabulary
    Working Memory